Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

نویسندگان

  • Yutaka Ishino
  • Cheng Zhu
  • Deshea L. Harris
  • Nancy C. Joyce
چکیده

PURPOSE Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. METHODS Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (<3 years old) and older donors (>60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. RESULTS PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. CONCLUSIONS Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B expression, but not EGFR expression, was elevated in HCEC from older donors, suggesting that the reduced proliferative activity of these cells in response to EGF is due, at least in part, to increased PTP1B activity. The fact that inhibition of PTP1B increased the relative number of cells entering S-phase strongly suggests that PTP1B helps negatively regulate EGF-stimulated cell cycle entry in HCEC. These results also suggest that it may be possible to increase the proliferative activity of HCEC, particularly in cells from older donors, by inhibiting the activity of this important protein tyrosine phosphatase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells

PURPOSE The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. METHODS Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells ...

متن کامل

Protein Tyrosine Phosphatase-1B (PTP1B) Regulates EGF-induced Stimulation of Corneal Endothelial Cell Proliferation

Human corneal endothelial cells (HCECs) do not normally proliferate in vivo. However, they divide in response to wounding ex vivo and proliferate in culture media when stimulated by appropriate growth promoting agents. Elucidating the mechanisms of HCEC proliferation opens a window to novel therapeutic strategies for corneal disease caused by abnormal endo-thelial cells. Epidermal growth factor...

متن کامل

Protein tyrosine phosphatase 1B impairs diabetic wound healing through vascular endothelial growth factor receptor 2 dephosphorylation.

OBJECTIVE Impaired wound healing is a major complication of diabetes mellitus. The mechanisms that govern wound healing, however, are complex and incompletely understood. In the present study, we determined the inhibitory role of protein tyrosine phosphatase 1B (PTP1B) in the process of diabetic wound healing. APPROACH AND RESULTS First, by comparing the wound healing process in PTP1B knockou...

متن کامل

Deletion of Protein Tyrosine Phosphatase 1B (PTP1B) Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction

Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding...

متن کامل

VCAM-1 activation of endothelial cell protein tyrosine phosphatase 1B.

Lymphocytes migrate from the blood into tissue by binding to and migrating across endothelial cells. One of the endothelial cell adhesion molecules that mediate lymphocyte binding is VCAM-1. We have reported that binding to VCAM-1 activates endothelial cell NADPH oxidase for the generation of reactive oxygen species (ROS). The ROS oxidize and stimulate an increase in protein kinase C (PKC)alpha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Vision

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008